The Concept of Success in Vacuum Induction Furnace Technology
VIDP – The Systems Concept

Equipment Advantages

Small Furnace Volume
- Reduced desorption surfaces
- Small vacuum pumping system
- Optimum control of the furnace atmosphere
- Low inert gas consumption

High Flexibility
- Through a range of interchangeable lower furnace bodies
- Variable pouring technologies (Ingot Casting, Horizontal Continuous Casting, Powder Production)
- Unit can be modularly expanded
- Connection to multiple casting chambers

Easily Maintainable
- Power cables and hydraulic lines are outside the melting chamber – leaks do not affect the vacuum
- Simple maintenance of the vacuum pumps through effective filter system, smaller vacuum pumping system
- Tried and tested components, preventative fault diagnostics

Reliable Crucible Status Monitoring
- Increased operational reliability
- Optimisation of the crucible life

Legend

1. VIDP melting chamber
2. Mold chamber
3. Bulk charger
4. Launder lock
5. Melting power supply
6. Vacuum pumping system
7. Temperature measurement / sample taking
8. Central control desk

Vacuum Charging

Temperature Measurement – Sample Taking

Degassing – Homogenizing
Fast Furnace Change

- < 1 hour with hot crucible
- High operating availability
- Increased productivity by up to 25%
- Rapid alloy change
- Separate crucible break out and relining stations
VIDP: Higher Quality, Flexibility and Performance

Applications

- Charging, melting, degassing, distilling, alloying, homogenizing and pouring of specialty alloys under vacuum or protective gas for applications in
 - Aerospace
 - Medical equipment
 - Tool making
 - Chemical engineering
 - Power generation equipment
 - Electronics
- Primary melter for ESR, VAR, precision casting and powder metallurgy feedstock
- Production of rolling and forging ingots, remelting electrodes, barsticks and molten metal for continuous casting and precision casting

Materials

- Superalloys
- Nickel-base alloys
- Cobalt-base alloys
- Tool steels
- Stainless steels
- Amorphous alloys
- Magnetic materials
- High purity or reactive Copper and Aluminum alloys

Charging, alloying, temperature measurement and sample taking

The VIDP furnace can be charged liquid in open air or under vacuum through a mobile bulk charger lock.

Degassing and Refining/ Homogenizing

3 phase electro-magnetic stirring for controlled bath movement with low power input during refining phase, gas purging with porous plug in crucible bottom.

Temperature measurement and sample taking

Temperature measurement and sampling can be done either a small vacuum lock lance.
Productivity

- Cleanliness
- Versatile pouring possibilities
- Rapid product change

Maintenance

- Quick changing of the furnace body and quick crucible cleaning for an alloy change as well as effective loading/packing of the crucible

Casting

- Controlled tilting of the entire furnace housing for tapping the melt into the transfer launder

Metallurgy

- Attainment of precision analyses
- Removal of gasses (such as O, H, N), metallic impurities and harmful trace elements
- Fine decarburization down to ELC qualities
- Distilling off unwanted elements
- Prevention of oxidation losses and avoidance of Oxide and Nitride formation
- Decanting of slag inclusions
- Homogenization of the melt
- Treatment of the melt with reactive gasses

16 ton VIDP system

Böhler Edelstahl
Kapfenberg, Austria

Sampling

- Sample taking are possible through or through the bulk charger

Vacuum crucible preheat station
The VIDP-Process Advantages

Vacuum - (pressure < 10^{-3} mbar) or protective gas operation possible
- The entire melt chamber can be permanently left under a controlled atmosphere during a melting campaign lasting several days.

All important secondary metallurgical treatment steps take place in a vessel equipped with appropriate vacuum locks
- All necessary process steps such as charging, deslagging, temperature measurement, sample taking and alloying are possible without interrupting the vacuum.

Small furnace volume (1:10 compared to chamber type furnaces) and small internal furnace surfaces
- Lowest desorption surfaces and low gas emission
- Only a small vacuum pumping system required
- Easy cleaning
- Large melt surface and better relationship for boundary dependant reactions and thus high degassing rates
- High crucible freeboard
- Safety with foaming melts or delay in boiling.

Electromagnetic stirring
- Optimum degassing of the melt without energy input and overheating
- Good homogenization and rapid mixing in of reactive alloying elements
- Exact setting of melt temperature
- Decanting of inclusions

Effective degassing/ Distillation

Pouring into the transfer launder

Tundish box with slag weir
The VIDP-Casting Options

- Maximum flexibility with the choice of process and pouring options such as
 - Removable casting chamber for small or medium sizes
 - Fixed casting chamber for large forging ingots and remelt electrodes
 - Tundish chamber with horizontal and vertical continuous casting
 - Atomization system for production of powders and/or spray casting

The VIDP-Process Control

- Process data collection and documentation with link to a host computer facilitates reproducible quality settings
- Safe, simple operation thanks to automated sequencing procedure
- Automatic crucible monitoring for increased process safety
- Automatic suction capacity measurement and leak rate detection
VIDP 400 (1-3 tons)

Key technical data
- Charge capacity 2 tons
- Production of Fe/Ni/Rare Earth based Hydrogen storage alloys
- Pouring of ingots and plates
- Melting power 810 kW
- Operating pressure 10^{-2} mbar

VIDP 400, Treibacher Auermet, Ravne, Slovenia

View with open casting chamber
VIDP 1000 (4-8 tons)

Key technical data

- Charge capacity 8 tons
- Production of Ni/Co base alloys
- Pouring of small ingots (Barsticks) and provision of molten metal for horizontal continuous casting system
- Melting power 2,000 kW
- Operating pressure 10^4 mbar

VIDP 1000, Ross & Catherall, Sheffield, U. K.
VIDP 2000 (9-18 tons)

Key technical data

- Charge capacity 16 tons
- Production of Special Steels and Ni/Co base alloys
- Pouring of large forging ingots and remelt electrodes
- Melting power 3,500 kW
- Operating pressure 10^{-2} mbar

VIDP 2000, Böhler Edelstahl, Kapfenberg, Austria

Melting chamber in pouring position
VIDP 3000 (19-30 tons)

Key technical data

- Charge capacity 22 tons
- Production of Special Steels and Ni/Co base alloys
- Pouring of large forging ingots and remelt electrodes
- Melting power 5,000 kW
- Operating pressure 10⁻² mbar

VIDP 3000, Carpenter Technology, Reading, PA, USA

Control center (tilted position for tapping in the background)
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>VIDP 400</th>
<th>VIDP 1000</th>
<th>VIDP 2000</th>
<th>VIDP 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crucible size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity (based on Ni)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical cycle times</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Co base alloy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe base alloys/ Special steels</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furnace changeover times</td>
<td>h</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
<td>< 1</td>
</tr>
<tr>
<td>Operating pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With mechanical pump set</td>
<td>mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With oil booster pump set</td>
<td>mbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical layout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output melting power supply</td>
<td>kW</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected power vacuum pump set and auxiliary equipment (depends on scope of supply)</td>
<td>(kVA)</td>
<td>ca. 150</td>
<td>ca. 250</td>
<td>ca. 300</td>
<td>ca. 350</td>
</tr>
<tr>
<td>Cooling water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total consumption ((\Delta t)=10 °C)</td>
<td>(m³ x h⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length (L) x Width (W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane capacity (metric tons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Data

China
ALD Liaison Office
C/o C&K Development Co., Ltd.
Rm. 1102, South Office Tower
Hong Kong Plaza
283 Huai Ha Zhong Rd.
Shanghai, 200021, China
Phone: +86 (21) 63 85 - 55 00
Email: ald@ald-vt.cn

Great Britain
ALD Vacuum Technologies Ltd
First Floor
276 High Street
Guildford, Surrey GU 1 3JL, UK
Phone: +44 (1483) 45 44 34
Email: info@aldvacutech.co.uk

USA / Canada
ALD Vacuum Technologies, Inc.
18, Thompson Road
East Windsor, CT 06088, USA
Phone: +1 (860) 386 72 - 27
Email: info@ald-usa.com

Far East
ALD Thermo Technologies Far East Co., Ltd
10F. Shinjuku Nomura Bldg
1-26-2 Nishi-Shinjuku, Shinjuku-Ku
Tokyo 163-0558, Japan
Phone: +81 (3) 33 40 37 26
Email: Peter.Lang@ald-vt.de

Russia
ALD Vaccumye Technologii OOO
ul. Bolschaia Ordynka 40, str. 2
109017 Moscow, Russia
Phone: +7 (495) 787 6733
Email: ald@metallurg.com.ru